Solve for: 5^2+(296+4)/(3 \times 5)\div5-7

Expression: ${5}^{2}+\frac{ 296+4 }{ 3 \times 5 }\div5-7$

Evaluate the power

$25+\frac{ 296+4 }{ 3 \times 5 }\div5-7$

Add the numbers

$25+\frac{ 300 }{ 3 \times 5 }\div5-7$

Dividing is equivalent to multiplying by the reciprocal

$25+\frac{ 300 }{ 3 \times 5 } \times \frac{ 1 }{ 5 }-7$

Cancel out the common factor $3$

$25+\frac{ 100 }{ 5 } \times \frac{ 1 }{ 5 }-7$

Cancel out the common factor $5$

$25+20 \times \frac{ 1 }{ 5 }-7$

Cancel out the greatest common factor $5$

$25+4-7$

Calculate the sum or difference

$22$