Evaluate: x^3-4x^2-3x+12=0

Expression: $x^{3}-4x^{2}-3x+12=0$

Factor $x^{3}-4x^{2}-3x+12:{\quad}(x-4)(x+\sqrt{3})(x-\sqrt{3})$

$(x-4)(x+\sqrt{3})(x-\sqrt{3})=0$

Using the Zero Factor Principle:\quad If $ ab=0 $then $ a=0 $or $ b=0$

$x-4=0\lor x+\sqrt{3}=0\lor x-\sqrt{3}=0$

The solutions are

$x=4,x=-\sqrt{3},x=\sqrt{3}$