Solve for: 325*10^{-8}

Expression: $325\cdot 10^{-8}$

Apply exponent rule $a^{-b}=\frac{1}{a^b}$

$=325\cdot \frac{1}{10^{8}}$

$10^{8}=100000000$

$=325\cdot \frac{1}{100000000}$

Convert element to fraction $325=\frac{325}{1}$

$=\frac{325}{1}\cdot \frac{1}{100000000}$

Apply the fraction rule $\frac{a}{b}\cdot \frac{c}{d}=\frac{a\:\cdot \:c}{b\:\cdot \:d}$

$=\frac{325\cdot 1}{1\cdot 100000000}$

$\frac{325\cdot 1}{1\cdot 100000000}=\frac{325}{100000000}$

$=\frac{325}{100000000}$

Factor the number: $ 325=25\cdot 13$

$=\frac{25\cdot 13}{100000000}$

Factor the number: $ 100000000=25\cdot 4000000$

$=\frac{25\cdot 13}{25\cdot 4000000}$

Cancel the common factor: $ 25$

$=\frac{13}{4000000}$