$$\frac{x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}+\frac{\left(6x-3\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}$$
Since $\frac{x\left(x-5\right)}{\left(x-5\right)\left(x+5\right)}$ and $\frac{\left(6x-3\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}$ have the same denominator, add them by adding their numerators.$$\frac{x\left(x-5\right)+\left(6x-3\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}$$
Do the multiplications in $x\left(x-5\right)+\left(6x-3\right)\left(x+5\right)$.$$\frac{x^{2}-5x+6x^{2}+30x-3x-15}{\left(x-5\right)\left(x+5\right)}$$
Combine like terms in $x^{2}-5x+6x^{2}+30x-3x-15$.$$\frac{22x-15+7x^{2}}{\left(x-5\right)\left(x+5\right)}$$
Expand $\left(x-5\right)\left(x+5\right)$.$$\frac{22x-15+7x^{2}}{x^{2}-25}$$