${\left( \frac{ 1 }{ 3 } \right)}^{-2}-\sqrt[3]{1-\frac{ 7 }{ 8 }}-{\left( -\frac{ 1 }{ 2 }+\frac{ 1 }{ 3 } \right)}^{-1}$
Calculate the sum${\left( \frac{ 1 }{ 3 } \right)}^{-2}-\sqrt[3]{1-\frac{ 7 }{ 8 }}-{\left( -\frac{ 1 }{ 6 } \right)}^{-1}$
Express with a positive exponent using ${\left( \frac{ 1 }{ a } \right)}^{-n}={a}^{n}$${3}^{2}-\sqrt[3]{1-\frac{ 7 }{ 8 }}-{\left( -\frac{ 1 }{ 6 } \right)}^{-1}$
Any expression raised to the power of $-1$ equals its reciprocal${3}^{2}-\sqrt[3]{1-\frac{ 7 }{ 8 }}-\left( -6 \right)$
Evaluate the power$9-\sqrt[3]{1-\frac{ 7 }{ 8 }}-\left( -6 \right)$
When there is a $-$ in front of an expression in parentheses, change the sign of each term of the expression and remove the parentheses$9-\sqrt[3]{1-\frac{ 7 }{ 8 }}+6$
Add the numbers$15-\sqrt[3]{1-\frac{ 7 }{ 8 }}$
Calculate the difference$15-\sqrt[3]{\frac{ 1 }{ 8 }}$
Evaluate the cube root$15-\frac{ 1 }{ 2 }$
Calculate the difference$\begin{align*}&\frac{ 29 }{ 2 } \\&\begin{array} { l }14 \frac{ 1 }{ 2 },& 14.5\end{array}\end{align*}$