Solve for: -5 \times ((-6^2+6^3)\div(-2^2+2^3))

Expression: $-5 \times \left( \left( -{6}^{2}+{6}^{3} \right)\div\left( -{2}^{2}+{2}^{3} \right) \right)$

Factor the expression

$-5 \times \left( \left( -1+6 \right) \times {6}^{2}\div\left( -{2}^{2}+{2}^{3} \right) \right)$

Factor the expression

$-5 \times \left( \left( -1+6 \right) \times {6}^{2}\div\left( \left( -1+2 \right) \times {2}^{2} \right) \right)$

Calculate the sum

$-5 \times \left( 5 \times {6}^{2}\div\left( \left( -1+2 \right) \times {2}^{2} \right) \right)$

Calculate the sum

$-5 \times \left( 5 \times {6}^{2}\div\left( 1 \times {2}^{2} \right) \right)$

Any expression multiplied by $1$ remains the same

$-5 \times \left( 5 \times {6}^{2}\div{2}^{2} \right)$

Calculate the quotient

$-5 \times \left( 5 \times {3}^{2} \right)$

Evaluate the power

$-5 \times \left( 5 \times 9 \right)$

Multiply the numbers

$-5 \times 45$

Multiply the numbers

$-225$