Solve for: sqrt() 2 sqrt() 3 sqrt() 4

Expression: $$\sqrt { 2 } \sqrt { 3 } \sqrt { 4 }$$

Factor $4=2\times 2$. Rewrite the square root of the product $\sqrt{2\times 2}$ as the product of square roots $\sqrt{2}\sqrt{2}$.

$$\sqrt{2}\sqrt{3}\sqrt{2}\sqrt{2}$$

Multiply $\sqrt{2}$ and $\sqrt{2}$ to get $2$.

$$2\sqrt{3}\sqrt{2}$$

To multiply $\sqrt{3}$ and $\sqrt{2}$, multiply the numbers under the square root.

$$2\sqrt{6}$$