Solve for: (x^4+8y)^2

Expression: ${\left( {x}^{4}+8y \right)}^{2}$

Use ${\left( a+b \right)}^{2}={a}^{2}+2ab+{b}^{2}$ to expand the expression

${\left( {x}^{4} \right)}^{2}+2{x}^{4} \times 8y+{\left( 8y \right)}^{2}$

Simplify the expression by multiplying exponents

${x}^{8}+2{x}^{4} \times 8y+{\left( 8y \right)}^{2}$

Calculate the product

${x}^{8}+16{x}^{4}y+{\left( 8y \right)}^{2}$

To raise a product to a power, raise each factor to that power

${x}^{8}+16{x}^{4}y+64{y}^{2}$