$\lim_{x \rightarrow \frac{ 1 }{ 5 }^+} \left(x \times \frac{ 1 }{ 1-5x }\right)$
Evaluate the limit of each term separately$\begin{array} { l }\lim_{x \rightarrow \frac{ 1 }{ 5 }^+} \left(x\right),\\\lim_{x \rightarrow \frac{ 1 }{ 5 }^+} \left(\frac{ 1 }{ 1-5x }\right)\end{array}$
Evaluate the limit$\begin{array} { l }\frac{ 1 }{ 5 },\\\lim_{x \rightarrow \frac{ 1 }{ 5 }^+} \left(\frac{ 1 }{ 1-5x }\right)\end{array}$
Evaluate the limit$\begin{array} { l }\frac{ 1 }{ 5 },\\-\infty\end{array}$
Since the expression $\begin{array} { l }a \times \left( -\infty \right),& a > 0\end{array}$ is defined as $-\infty$, the limit $\lim_{x \rightarrow \frac{ 1 }{ 5 }^+} \left(x \times \frac{ 1 }{ 1-5x }\right)$ equals $-\infty$$-\infty$