${\cos\left({θ}\right)}^{2} \times \left( \tan\left({θ}\right)\tan\left({θ}\right)+1 \right)$
The factor $\tan\left({θ}\right)$ repeats $2$ times, so the base is $\tan\left({θ}\right)$ and the exponent is $2$${\cos\left({θ}\right)}^{2} \times \left( {\tan\left({θ}\right)}^{2}+1 \right)$
Use $\tan\left({t}\right)=\frac{ \sin\left({t}\right) }{ \cos\left({t}\right) }$ to transform the expression${\cos\left({θ}\right)}^{2} \times \left( {\left( \frac{ \sin\left({θ}\right) }{ \cos\left({θ}\right) } \right)}^{2}+1 \right)$
To raise a fraction to a power, raise the numerator and denominator to that power${\cos\left({θ}\right)}^{2} \times \left( \frac{ {\sin\left({θ}\right)}^{2} }{ {\cos\left({θ}\right)}^{2} }+1 \right)$
Write all numerators above the common denominator${\cos\left({θ}\right)}^{2} \times \frac{ {\sin\left({θ}\right)}^{2}+{\cos\left({θ}\right)}^{2} }{ {\cos\left({θ}\right)}^{2} }$
Use ${\sin\left({t}\right)}^{2}+{\cos\left({t}\right)}^{2}=1$ to simplify the expression${\cos\left({θ}\right)}^{2} \times \frac{ 1 }{ {\cos\left({θ}\right)}^{2} }$
Cancel out the common factor ${\cos\left({θ}\right)}^{2}$$1$