${w}^{2}-36=0$
Identify the coefficients $p$ and $q$ of the quadratic equation$\begin{array} { l }p=0,& q=-36\end{array}$
Substitute $p=0$ and $q=-36$ into the PQ formula $x=-\frac{ p }{ 2 }\pm\sqrt{ {\left( \frac{ p }{ 2 } \right)}^{2}-q }$$w=-\frac{ 0 }{ 2 }\pm\sqrt{ {\left( \frac{ 0 }{ 2 } \right)}^{2}-\left( -36 \right) }$
$0$ divided by any non-zero expression equals $0$$w=-0\pm\sqrt{ {\left( \frac{ 0 }{ 2 } \right)}^{2}-\left( -36 \right) }$
Simplify the expression$w=-0\pm6$
Removing $0$ doesn't change the value, so remove it from the expression$w=6$
Write the solutions, one with a $+$ sign and one with a $-$ sign$\begin{array} { l }w=6,\\w=-6\end{array}$
The equation has $2$ solutions$\begin{array} { l }w_1=-6,& w_2=6\end{array}$