${w}^{2}-36=0$
Identify the coefficients $a$, $b$ and $c$ of the quadratic equation$\begin{array} { l }a=1,& b=0,& c=-36\end{array}$
Substitute $a=1$, $b=0$ and $c=-36$ into the quadratic formula $w=\frac{ -b\pm\sqrt{ {b}^{2}-4ac } }{ 2a }$$w=\frac{ -0\pm\sqrt{ {0}^{2}-4 \times 1 \times \left( -36 \right) } }{ 2 \times 1 }$
Removing $0$ doesn't change the value, so remove it from the expression$w=\frac{ \sqrt{ {0}^{2}-4 \times 1 \times \left( -36 \right) } }{ 2 \times 1 }$
Any expression multiplied by $1$ remains the same$w=\frac{ \sqrt{ {0}^{2}-4 \times \left( -36 \right) } }{ 2 \times 1 }$
Any expression multiplied by $1$ remains the same$w=\frac{ \sqrt{ {0}^{2}-4 \times \left( -36 \right) } }{ 2 }$
$0$ raised to any positive power equals $0$$w=\frac{ \sqrt{ 0-4 \times \left( -36 \right) } }{ 2 }$
Multiply the numbers$w=\frac{ \sqrt{ 0+144 } }{ 2 }$
Removing $0$ doesn't change the value, so remove it from the expression$w=\frac{ \sqrt{ 144 } }{ 2 }$
Evaluate the square root$w=\frac{ 12 }{ 2 }$
Write the solutions, one with a $+$ sign and one with a $-$ sign$\begin{array} { l }w=\frac{ 12 }{ 2 },\\w=\frac{ -12 }{ 2 }\end{array}$
Cancel out the common factor $2$$\begin{array} { l }w=6,\\w=\frac{ -12 }{ 2 }\end{array}$
Cancel out the common factor $2$$\begin{array} { l }w=6,\\w=-6\end{array}$
The equation has $2$ solutions$\begin{array} { l }w_1=-6,& w_2=6\end{array}$