Evaluate: cube root of-4}\sqrt[3]{-16

Expression: $\sqrt[3]{-4}\sqrt[3]{-16}$

An odd root of a negative radicand is always a negative

$-\sqrt[3]{4} \times \sqrt[3]{-16}$

An odd root of a negative radicand is always a negative

$-\sqrt[3]{4} \times \left( -\sqrt[3]{16} \right)$

Multiplying two negatives equals a positive: $\left( - \right) \times \left( - \right)=\left( + \right)$

$\sqrt[3]{4}\sqrt[3]{16}$

Calculate the product

$\sqrt[3]{64}$

Evaluate the cube root

$4$