Evaluate: 3x+1 > 2x-4 > x-13

Expression: $3x+1 > 2x-4 > x-13$

Separate the compound inequality into two inequalities

$\begin{array} { l }2x-4 < 3x+1,\\2x-4 > x-13\end{array}$

Solve the inequality for $x$

$\begin{array} { l }x > -5,\\2x-4 > x-13\end{array}$

Solve the inequality for $x$

$\begin{array} { l }x > -5,\\x > -9\end{array}$

Find the intersection

$\begin{align*}&x \in \langle-5, +\infty\rangle \\&\begin{array} { l }x > -5\end{array}\end{align*}$