Calculate: (7+|-8-5^2|)/((1-4)^3+17)

Expression: $\frac{ 7+|-8-{5}^{2}| }{ {\left( 1-4 \right)}^{3}+17 }$

Evaluate the power

$\frac{ 7+|-8-25| }{ {\left( 1-4 \right)}^{3}+17 }$

Calculate the difference

$\frac{ 7+|-8-25| }{ {\left( -3 \right)}^{3}+17 }$

Calculate the difference

$\frac{ 7+|-33| }{ {\left( -3 \right)}^{3}+17 }$

Evaluate the power

$\frac{ 7+|-33| }{ -27+17 }$

The absolute value of any number is always positive

$\frac{ 7+33 }{ -27+17 }$

Calculate the sum

$\frac{ 7+33 }{ -10 }$

Add the numbers

$\frac{ 40 }{ -10 }$

Cancel out the common factor $-10$

$-4$