$\frac{ 150000\left( 1-{\left( \frac{ 11 }{ 10 } \right)}^{5} \right) }{ 1-1.1 }$
Calculate the difference$\frac{ 150000\left( 1-{\left( \frac{ 11 }{ 10 } \right)}^{5} \right) }{ -0.1 }$
To raise a fraction to a power, raise the numerator and denominator to that power$\frac{ 150000\left( 1-\frac{ {11}^{5} }{ {10}^{5} } \right) }{ -0.1 }$
Convert the decimal into a fraction$\frac{ 150000\left( 1-\frac{ {11}^{5} }{ {10}^{5} } \right) }{ -\frac{ 1 }{ 10 } }$
Distribute $150000$ through the parentheses$\frac{ 150000-\frac{ 3 \times {11}^{5} }{ 2 } }{ -\frac{ 1 }{ 10 } }$
Write all numerators above the common denominator$\frac{ \frac{ 300000-3 \times {11}^{5} }{ 2 } }{ -\frac{ 1 }{ 10 } }$
Use $\frac{ -a }{ b }=\frac{ a }{ -b }=-\frac{ a }{ b }$ to rewrite the fraction$-\frac{ \frac{ 300000-3 \times {11}^{5} }{ 2 } }{ \frac{ 1 }{ 10 } }$
Simplify the complex fraction$-\left( 300000-3 \times {11}^{5} \right) \times 5$
Distribute $5$ through the parentheses$-\left( 1500000-15 \times {11}^{5} \right)$
When there is a $-$ in front of an expression in parentheses, change the sign of each term of the expression and remove the parentheses$\begin{align*}&-1500000+15 \times {11}^{5} \\&915765\end{align*}$