Calculate: -6(-2y^3+4-3w^2)

Expression: $-6\left( -2{y}^{3}+4-3{w}^{2} \right)$

Multiply each term in the parentheses by $-6$

$-6 \times \left( -2{y}^{3} \right)-6 \times 4-6 \times \left( -3{w}^{2} \right)$

Multiplying two negatives equals a positive: $\left( - \right) \times \left( - \right)=\left( + \right)$

$6 \times 2{y}^{3}-6 \times 4-6 \times \left( -3{w}^{2} \right)$

Calculate the product

$12{y}^{3}-6 \times 4-6 \times \left( -3{w}^{2} \right)$

Multiply the numbers

$12{y}^{3}-24-6 \times \left( -3{w}^{2} \right)$

Multiplying two negatives equals a positive: $\left( - \right) \times \left( - \right)=\left( + \right)$

$12{y}^{3}-24+6 \times 3{w}^{2}$

Calculate the product

$12{y}^{3}-24+18{w}^{2}$