$-6 \times \left( -2{y}^{3} \right)-6 \times 4-6 \times \left( -3{w}^{2} \right)$
Multiplying two negatives equals a positive: $\left( - \right) \times \left( - \right)=\left( + \right)$$6 \times 2{y}^{3}-6 \times 4-6 \times \left( -3{w}^{2} \right)$
Calculate the product$12{y}^{3}-6 \times 4-6 \times \left( -3{w}^{2} \right)$
Multiply the numbers$12{y}^{3}-24-6 \times \left( -3{w}^{2} \right)$
Multiplying two negatives equals a positive: $\left( - \right) \times \left( - \right)=\left( + \right)$$12{y}^{3}-24+6 \times 3{w}^{2}$
Calculate the product$12{y}^{3}-24+18{w}^{2}$