Calculate: 2x=9

Expression: $$

$(\frac{f}{g})(x)=\frac{f(x)}{g(x)}$

$g(x)=-5x$

Find $(\frac{f}{g})(x) $given $ f(x)=2x^{2}-2,g(x)=-5x$

$f(x)=2x^{2}-2$ $=\frac{2x^{2}-2}{-5x}$

Simplify $ \frac{2x^{2}-2}{-5x}:{\quad}-\frac{2x^{2}-2}{5x}$

$=-\frac{2x^{2}-2}{5x}$