Solve for: (m)/(5)+9=11

Expression: $4 \times {\left( -2 \right)}^{2}+8 \times \left( -2 \right)+3 \times \left( -2 \right)+6$

Write the number in exponential form with the base of $2$

${2}^{2} \times {\left( -2 \right)}^{2}+8 \times \left( -2 \right)+3 \times \left( -2 \right)+6$

A negative base raised to an even power equals a positive

${2}^{2} \times {2}^{2}+8 \times \left( -2 \right)+3 \times \left( -2 \right)+6$

Multiply the numbers

${2}^{2} \times {2}^{2}-16+3 \times \left( -2 \right)+6$

Multiply the numbers

${2}^{2} \times {2}^{2}-16-6+6$

Calculate the product

${2}^{4}-16-6+6$

Since two opposites add up to $0$, remove them from the expression

${2}^{4}-16$

Evaluate the power

$16-16$

The sum of two opposites equals $0$

$0$