Solve for: 4 a ^ 3-a c ^ 2

Expression: $$4 a ^ { 3 } - a c ^ { 2 }$$

Factor out $a$.

$$a\left(4a^{2}-c^{2}\right)$$

Consider $4a^{2}-c^{2}$. Rewrite $4a^{2}-c^{2}$ as $\left(2a\right)^{2}-c^{2}$. The difference of squares can be factored using the rule: $p^{2}-q^{2}=\left(p-q\right)\left(p+q\right)$.

$$\left(2a-c\right)\left(2a+c\right)$$

Rewrite the complete factored expression.

$$a\left(2a-c\right)\left(2a+c\right)$$