Solve for: (x ^ 4-16 x ^ 2-40 x-25) / (x-5)

Expression: $$( x ^ { 4 } - 16 x ^ { 2 } - 40 x - 25 ) \div ( x - 5 )$$

Factor the expressions that are not already factored.

$$\frac{\left(x-5\right)\left(x+1\right)\left(x^{2}+4x+5\right)}{x-5}$$

Cancel out $x-5$ in both numerator and denominator.

$$\left(x+1\right)\left(x^{2}+4x+5\right)$$

Expand the expression.

$$x^{3}+5x^{2}+9x+5$$