Evaluate: 4ln(x)=28

Expression: $4\ln\left({x}\right)=28$

Determine the defined range

$\begin{array} { l }4\ln\left({x}\right)=28,& x > 0\end{array}$

Divide both sides of the equation by $4$

$\ln\left({x}\right)=7$

Convert the logarithm into exponential form using the fact that $\ln\left({x}\right)=b$ is equal to $x={e}^{b}$

$\begin{array} { l }x={e}^{7},& x > 0\end{array}$

Check if the solution is in the defined range

$\begin{align*}&x={e}^{7} \\&x\approx1096.63316\end{align*}$