$=\sqrt{2^{5}\cdot 3^{2}}$
Apply exponent rule $a^{b+c}=a^b\cdot a^c$$=\sqrt{2^{4}\cdot 2\cdot 3^{2}}$
$\sqrt{2^{4}\cdot 2\cdot 3^{2}}=\sqrt{2^{4}}\sqrt{2}\sqrt{3^{2}}$$=\sqrt{2^{4}}\sqrt{2}\sqrt{3^{2}}$
$\sqrt{2^{4}}=4$$=4\sqrt{2}\sqrt{3^{2}}$
Apply radical rule $\sqrt{a^2}=a,\quad a\ge0$$=4\sqrt{2}\cdot 3$
Multiply the numbers: $ 4\cdot 3=12$$=12\sqrt{2}$