$y '=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( \left( 2x-{x}^{2} \right) \times \left( {x}^{3}+4{x}^{2} \right) \right)$
Simplify the expression$y '=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 2{x}^{4}+8{x}^{3}-{x}^{5}-4{x}^{4} \right)$
Collect like terms$y '=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -2{x}^{4}+8{x}^{3}-{x}^{5} \right)$
Use differentiation rule $\frac{ \mathrm{d} }{ \mathrm{d}x} \left( f+g \right)=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( f \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( g \right)$$y '=\frac{ \mathrm{d} }{ \mathrm{d}x} \left( -2{x}^{4} \right)+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 8{x}^{3} \right)-\frac{ \mathrm{d} }{ \mathrm{d}x} \left( {x}^{5} \right)$
Find the derivative$y '=-2 \times 4{x}^{3}+\frac{ \mathrm{d} }{ \mathrm{d}x} \left( 8{x}^{3} \right)-\frac{ \mathrm{d} }{ \mathrm{d}x} \left( {x}^{5} \right)$
Find the derivative$y '=-2 \times 4{x}^{3}+8 \times 3{x}^{2}-\frac{ \mathrm{d} }{ \mathrm{d}x} \left( {x}^{5} \right)$
Find the derivative$y '=-2 \times 4{x}^{3}+8 \times 3{x}^{2}-5{x}^{4}$
Simplify the expression$y '=-5{x}^{4}-8{x}^{3}+24{x}^{2}$