Evaluate: (5^{-1})/(2)+(5)/(2^{-1)}+((5)/(2))^{-1}

Expression: $\frac{ {5}^{-1} }{ 2 }+\frac{ 5 }{ {2}^{-1} }+{\left( \frac{ 5 }{ 2 } \right)}^{-1}$

Any expression raised to the power of $-1$ equals its reciprocal

$\frac{ {5}^{-1} }{ 2 }+\frac{ 5 }{ {2}^{-1} }+\frac{ 2 }{ 5 }$

If a negative exponent is in the numerator, move the expression to the denominator and make the exponent positive

$\frac{ 1 }{ 2 \times 5 }+\frac{ 5 }{ {2}^{-1} }+\frac{ 2 }{ 5 }$

If a negative exponent is in the denominator, move the expression to the numerator and make the exponent positive

$\frac{ 1 }{ 2 \times 5 }+5 \times 2+\frac{ 2 }{ 5 }$

Multiply the numbers

$\frac{ 1 }{ 10 }+5 \times 2+\frac{ 2 }{ 5 }$

Multiply the numbers

$\frac{ 1 }{ 10 }+10+\frac{ 2 }{ 5 }$

Calculate the sum

$\begin{align*}&\frac{ 21 }{ 2 } \\&\begin{array} { l }10 \frac{ 1 }{ 2 },& 10.5\end{array}\end{align*}$