Calculate: {\text{begin}array l 2x-4y=10 } x+5y=40\text{end}array .

Expression: $\left\{\begin{array} { l } 2x-4y=10 \\ x+5y=40\end{array} \right.$

Solve the equation for $x$

$\left\{\begin{array} { l } 2x-4y=10 \\ x=40-5y\end{array} \right.$

Substitute the given value of $x$ into the equation $2x-4y=10$

$2\left( 40-5y \right)-4y=10$

Solve the equation for $y$

$y=5$

Substitute the given value of $y$ into the equation $x=40-5y$

$x=40-5 \times 5$

Solve the equation for $x$

$x=15$

The possible solution of the system is the ordered pair $\left( x, y\right)$

$\left( x, y\right)=\left( 15, 5\right)$

Check if the given ordered pair is the solution of the system of equations

$\left\{\begin{array} { l } 2 \times 15-4 \times 5=10 \\ 15+5 \times 5=40\end{array} \right.$

Simplify the equalities

$\left\{\begin{array} { l } 10=10 \\ 40=40\end{array} \right.$

Since all of the equalities are true, the ordered pair is the solution of the system

$\left( x, y\right)=\left( 15, 5\right)$