Solve for: (-54x^6y^9)/(-9x^2y^4)

Expression: $\frac{-54x^{6}y^{9}}{-9x^{2}y^{4}}$

Apply the fraction rule $\frac{-a}{-b}=\frac{a}{b}$

$=\frac{54x^{6}y^{9}}{9x^{2}y^{4}}$

Factor the number: $ 54=9\cdot 6$

$=\frac{9\cdot 6x^{6}y^{9}}{9x^{2}y^{4}}$

Cancel the common factor: $ 9$

$=\frac{6x^{6}y^{9}}{x^{2}y^{4}}$

Simplify $\frac{x^{6}}{x^{2}}:{\quad}x^{4}$

$=\frac{6x^{4}y^{9}}{y^{4}}$

Simplify $\frac{y^{9}}{y^{4}}:{\quad}y^{5}$

$=6x^{4}y^{5}$