Calculate: -3t >-6

Expression: $-3t > -6$

Divide both sides of the inequality by $-3$ and flip the inequality sign

$-3t\div\left( -3 \right) < -6\div\left( -3 \right)$

Any expression divided by itself equals $1$

$t < -6\div\left( -3 \right)$

Dividing two negatives equals a positive: $\left( - \right)\div\left( - \right)=\left( + \right)$

$t < 6\div3$

Calculate the quotient

$\begin{align*}&t < 2 \\&\begin{array} { l }t \in \langle-\infty, 2\rangle\end{array}\end{align*}$