$\left\{\begin{array} { l } 2x-3y=6 \\ 2x-6=3y\end{array} \right.$
Simplify the expression$\left\{\begin{array} { l } 2x-3y=6 \\ 2x-3y=6\end{array} \right.$
Multiply both sides of the equation by $-1$$\left\{\begin{array} { l } 2x-3y=6 \\ -2x+3y=-6\end{array} \right.$
Sum the equations vertically to eliminate at least one variable$0=0$
The statement is true for any value of $x$ and $y$ that satisfy both equations from the system. Therefore, the solution in parametric form is$\begin{array} { l }\left( x, y\right)=\left( x, -2+\frac{ 2 }{ 3 }x\right),& x \in ℝ\end{array}$