Evaluate: {\text{begin}array l 2(x-y)=y+6 } 2x-6=3y\text{end}array .

Expression: $\left\{\begin{array} { l } 2\left( x-y \right)=y+6 \\ 2x-6=3y\end{array} \right.$

Simplify the expression

$\left\{\begin{array} { l } 2x-3y=6 \\ 2x-6=3y\end{array} \right.$

Simplify the expression

$\left\{\begin{array} { l } 2x-3y=6 \\ 2x-3y=6\end{array} \right.$

Multiply both sides of the equation by $-1$

$\left\{\begin{array} { l } 2x-3y=6 \\ -2x+3y=-6\end{array} \right.$

Sum the equations vertically to eliminate at least one variable

$0=0$

The statement is true for any value of $x$ and $y$ that satisfy both equations from the system. Therefore, the solution in parametric form is

$\begin{array} { l }\left( x, y\right)=\left( x, -2+\frac{ 2 }{ 3 }x\right),& x \in ℝ\end{array}$